
First steps in using BBC micro:bit for control and physical computing

Adrian Oldknow adrian@ccite.org 16th January 2017

0. Writing your first program (please skip this section if you are already happy how to do it!)

The image above shows the main elements of the BBC micro:bit. One million of these were distributed up to

July 2016 to maintained schools in the UK to be given free to all 11-year old students. Since then they have

been on general sale for around £15, including a battery case and USB connecting cable. One of the aims of

the BBC digital literacy campaign has been to help people understand something now generally called the

`Internet of ThingsΩ όLƻ¢ ŦƻǊ ǎƘƻǊǘύΦ aŀƴȅ ƳƻŘŜǊƴ ǇǊƻŘǳŎǘǎ ǳǎŜ ǘƘŜ ŀŘƧŜŎǘƛǾŜ ȫsmartΩ ǘƻ ƳŜŀƴ ǘƘat they

include a computing device to control it, and probably one which can exchange data with other devices

wirelessly. Have a close look at the kinds of things this little device has built in to it. In order to make it work

you need to connect a power source such as 2 AAA batteries. What is missing is an On/Off switch! As soon

as the micro:bit has power it runs whatever program was loaded into it most recently. When you disconnect

the power, the micro:bit continues to store the program ς and will run it again as soon as you apply power.

So the first thing we need to find about is the simplest way to get a program to run on it. There are several

ways to do this. We will start off with the programming environment developed by Microsoft Research,

called the Programming Experience Toolkit, or PXT for short: https://pxt.microbit.org/.

If this is the first time you have

used the PXT editor, then you will

have a blank program area.

Otherwise it will open the last

program you built. In which case

click on P̀rojectsΩ ŀƴŘ ǎŜƭŜŎǘ

`New ProjectΩΦ

mailto:adrian@ccite.org
https://www.pxt.io/about
https://pxt.microbit.org/

The image of the micro:bit at the top left is a very clever

ŀƴƛƳŀǘŜŘ ŘŜǾƛŎŜΣ ŎŀƭƭŜŘ ŀƴ ȫŜƳǳƭŀǘƻǊΩ, which allows you to

test programs without even having your own micro:bit! The

coloured words in the next column are links to the various

building blocks from which you will build your program. If you

click on one of these, such as `BasicΩ ȅƻǳ ǿƛƭƭ ǎŜŜ ŀ ŎƻƭƭŜŎǘƛƻƴ

of blocks from which you select one and drag it to the

ǇǊƻƎǊŀƳƳƛƴƎ ǿƛƴŘƻǿ ƻƴ ǘƘŜ ǊƛƎƘǘΦ [ŜǘΩǎ ǘǊȅ the s̀how

numberΩ ōƭƻŎƪΦ When you click on it a yellow border shows

up, which means you have started to run your simple

program. You should see that the emulator shows the

number you have chosen to display. There will also be some

explanation about this block

called s̀howNumberΩΦ LŦ ȅƻǳ ŎƭƛŎƪ

on this you will open up a new

tab with a page of information

from the reference manual,

including an example. Try

deleting the zero and entering

ȅƻǳǊ ƻǿƴ ƴǳƳōŜǊ ƛƴǘƻ ǘƘŜ ȫǎƘƻǿ ƴǳƳōŜǊΩ ōƭƻŎƪΦ I

ƘŀǾŜ ŜƴǘŜǊŜŘ ȫнрсΩΣ ŀƴŘ ȅƻǳ ǿƛƭƭ ǎŜŜ ǘƘŀǘ ǘƘŜ

display scrolls to show each digit in turn, and the

ǇǊƻƎǊŀƳ ŜƴŘǎ ǿƛǘƘ ǘƘŜ ȫсΩ ƻƴ the display.

See what happens if you enter something which is

ƴƻǘ ŀ ǿƘƻƭŜ ƴǳƳōŜǊ ƭƛƪŜ ȫоΦмпΩ ƻǊ ȫǘǿƻΩΦ Lǘ ǿƻǳƭŘ ōŜ ŀ ƎƻƻŘ ƛŘŜŀΣ

now that you have started to build a program, to give it a name

like f̀irst stepsΩΦ ¦ǎŜ ȫProjectsΩ ŀƴŘ ǘƘŜƴ ȫRename projectΩΦ /ƭƻǎŜ

the dialog to get back to the editor.

Most programs do something repeatedly, and use what is called a

ȫƭƻƻǇΩΦ ¢ƘŜ ǎƛƳǇƭŜǎǘ ƪƛƴŘ ƻŦ ƭƻƻǇ ƛǎ ǘƘŜ ȫforeverΩ ƭƻƻǇΦ

Use the B̀asicΩ ƳŜƴǳ ŀƴŘ ŘǊŀƎ ƛƴ ŀ ȫforeverΩ ōƭƻŎƪ ŀƴŘ ŀ ȫpauseΩ ōƭƻŎƪΦ tƭŀŎŜ the `ǎƘƻǿ ƴǳƳōŜǊΩ and p̀auseΩ

blocks within the j̀awsΩ ƻŦ ǘƘŜ ȫforeverΩ ƭƻƻǇΦ CǊƻƳ ǘƘŜ ȫMathΩ ƳŜƴǳ ŘǊŀƎ ƛƴ ŀ ȫpick randomΩ ōƭƻŎƪ ŀƴŘ ǇƭŀŎŜ

it inside the s̀how numberΩ ōƭƻŎƪΦ 9Řƛǘ ǘƘŜ ƴǳƳōŜǊ ŀƴŘ ŎƘŀƴƎŜ ƛǘ ŦǊƻƳ п ǘƻ фΦ 9Řƛǘ ǘƘŜ ƴǳƳōŜǊ ƛƴ ǘƘŜ

`pauseΩ ōƭƻŎk and change it from 100 to 1000. So the new program will continually generate a random

ǿƘƻƭŜ ƴǳƳōŜǊ όŎŀƭƭŜŘ ŀƴ ȫƛƴǘŜƎŜǊΩύ ōŜǘǿŜŜƴ л ŀƴŘ фΣ ŘƛǎǇƭŀȅ ƛǘ ŀƴŘ ǿŀƛǘ мллл ƳƛƭƭƛǎŜŎƻƴŘǎ όƛΦŜΦ м ǎŜŎƻƴŘύ

before doing it all again. Check that this is what the emulator does.

https://pxt.microbit.org/reference/basic/show-number

Now explore what happens when you click on `JavaScriptΩΦ

This is exactly the same program but written in a text,

ǊŀǘƘŜǊ ǘƘŀƴ ŀ ƎǊŀǇƘƛŎŀƭΣ ŦƻǊƳŀǘΦ LǘΩǎ ƴƻǘ ŀǎ ǇǊŜǘǘȅΣ ōǳǘ ƛǘ ƛǎ

much more convenient to use for longer programs,

especially if you want to print them out. Click on `BlocksΩ

to swap back to the graphical version. Now we are ready

to send our working program to a micro:bit. This has two stages. The first is for the PXT editor to create a

version of the program which the micro:bit can understand. This converts all the lines of the JavaScript

program using a number code ƛƴ ǿƘŀǘ ƛǎ ŎŀƭƭŜŘ ȫōŀǎŜ мсΩ ƻǊ ȫƘŜȄΩ ŦƻǊ ǎƘƻǊǘΦ ¢ƘŜ ǊŜǎǳƭǘƛƴƎ ƘŜȄ ŦƛƭŜ ƛǎ ǎǘƻǊŜŘ ƻƴ

your computer, usually in a folder called something like 5̀ƻǿƴƭƻŀŘǎΩΦ ¢ƘŜ second stage is to connect a

micro:bit to the computer with a USB cable and to transfer the file to it. Once you have got used to this you

should find the whole business of writing a program on a computer, and loading it into the micro:bit, pretty

painless! Click on D̀ownloadΩΦ ¢Ƙƛǎ

opens a window at the bottom of the

web-browser display which shows you

that a file is being saved.

It is called `microbit-First-stepsΦƘŜȄΩΦ LŦ

you right-click on this name you can select

ǘƘŜ ƻǇǘƛƻƴ ǘƻ ȫ{Ƙƻǿ ƛƴ CƻƭŘŜǊΩΦ This

ƻǇŜƴǎ ȅƻǳǊ ȫ5ƻǿƴƭƻŀŘǎΩ ŦƻƭŘŜǊΦ ¸ƻǳ

should see your file at the top with the

current date and time. My version has a

size of 561 Kb. If you now plug your

micro:bit into the USB port of your

computer, after a few seconds another

window will open showing it as an

external storage device with a name

ǎƻƳŜǘƘƛƴƎ ƭƛƪŜ ȫaL/wh.L¢ ό5ΥύΩΦ

If you right-click on your hex file, you will

ƘŀǾŜ ǘƘŜ ƻǇǘƛƻƴ ǘƻ ȫ{ŜƴŘ ǘƻ ҔΩ ŀƴŘ ŀ ƭƛǎǘ ƻŦ

possible locations. Select `MICROBIT (D:)Ω

and a little dialogue box opens to show that

the file is being transferred. You will also

see an LED on the back of the micro:bit flash while this happens. As soon as the transfer is complete your

program should start to run. At the moment the micro:bit is being powered through the USB cable from the

computer. If you disconnect it, you can then attach a

battery pack and the program will happily start to run ς at

least until you disconnect the power.

If you are curious you can open your hex file with

ǎƻƳŜǘƘƛƴƎ ƭƛƪŜ ȫbƻǘŜǇŀŘΩ ŀƴŘ ǎŜŜ ǘƘŀǘ ƛǘ ŘƻŜǎ ƛƴŘŜŜŘ just

contain a load of numbers using the characters

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Once you have created a hex file you can send it to your friends. They can

either send it to their own micro:bits, or open it in the PXT editor. Try it now.

1. Making the micro:bit display respond to its buttons and sensors

The BBC micro:bit is quite a different animal from the Raspberry Pi. The RPi has to have input (keyboard and

mouse) and output (TV or monitor) devices connected in order to be useable. The micro:bit has its own

input (buttons and sensors) and output (the 25 LED display) devices built in. It can also have other ones

attached, such as buzzers, speakers and electronic components. In this section you will learn how. We will

start with the simple inputs ς the A and B buttons. The micro:bit has a very simple way of accepting inputs

from its buttons and using them to control the pattern of LEDs illuminated on the display. Start a New

program. We will build a simple 4-state device which tells the micro:bit what to display

(a) when no buttons are pressed:

(b) when button A is pressed:

(c) when button B is pressed:

(d) when both buttons A and B are pressed.

Here is the complete program:

The ̀show ledsΩ ōƭƻŎƪǎ ŀǊŜ ȫBasicΩ ŎƻƳƳŀƴŘǎΦ ¢ƘŜ ȫifΩ ōƭƻŎƪǎ ŀǊŜ ȫLogicΩ ŎƻƳƳŀƴds. The b̀uttonΩ ōƭƻŎƪǎ ŀǊŜ

`InputΩ ŎƻƳƳŀƴŘǎΦ .ȅ ŘŜŦŀǳƭǘ, the led display will be blank unless either or both of the buttons are pressed.

See what happens to the emulator when you run the program. Note that it creates an extra A+B button!

When you are ƘŀǇǇȅΣ ƎƛǾŜ ȅƻǳǊ ǇǊƻƎǊŀƳ ŀ ƴŀƳŜ ƭƛƪŜ ȫtǳǎƘ ōǳǘǘƻƴǎΩΦ 5ƻǿƴƭƻŀŘ ƛǘ ŀǎ ǘƘŜ ƘŜȄ ŦƛƭŜΥ ȫƳƛŎǊƻōƛǘ-

Push-ōǳǘǘƻƴǎΦƘŜȄΩ ŀƴŘ ǘǊŀƴǎŦŜǊ ƛǘ ǘƻ ȅƻǳǊ ƳƛŎǊƻΥōƛǘΦ ¢Ŝǎǘ ǘƘŀǘ ǘƘŜ ǊƛƎƘǘ ǘƘƛƴƎǎ ƘŀǇǇŜƴ ǿƘŜƴ ȅƻǳ ǇǊŜǎǎ ŀƴȅ ƻǊ

all of the buttons. Now you have the basic idea we can see how the micro:bit can make decisions about

what to display based on its own sensors. The first one we will try is the Light ǎŜƴǎƻǊΦ ¢Ƙƛǎ ƛǎ ƛǎƴΩǘ ǎƘƻǿƴ ƻƴ

the actual micro:bit, but it uses a clever way to detect light intensity falling on the 25 led display. (The

technical details are here.) Start a new program and build the following one. The `light levelΩ ōƭƻŎƪ ƛǎ ƛƴ ǘƘŜ

https://lancaster-university.github.io/microbit-docs/extras/light-sensing/

`InputΩ ƳŜƴǳΦ ¢Ƙƛǎ ǊŜǘǳǊƴǎ ŀ value between 0 and 255. You can simulate this by using your mouse to pull

ǘƘŜ ȅŜƭƭƻǿ ȫōƭƛƴŘΩ ǳǇ ŀƴŘ Řƻǿƴ ƻǾŜǊ ǘƘŜ ǎƛƳǳƭŀǘŜŘ ǎŜƴǎƻǊ ŀǘ ǘƘŜ ǘƻǇ ƭŜŦǘ ƻŦ ǘƘŜ ŜƳǳƭŀǘƻǊΦ Because the result

can have up to three digits, the display will scroll to show you the simulated reading.

Give your program a title such as `Light levelΩ. Download it as the `microbit-Light-ƭŜǾŜƭΦƘŜȄΩ ŦƛƭŜ ŀƴŘ ǘǊŀƴǎŦŜǊ

it to your micro:bit. Try moving it closer and further from a light source, or shine a torch at the display.

We will now use a little trick to make the `light levelΩ ŜŀǎƛŜǊ ǘƻ ǿƻǊƪ ǿƛǘƘΦ CƛƴŘ ǘƘŜ ȫdivideΩ ōƭƻŎƪ ƛƴ ǘƘŜ

`MathΩ ƳŜƴǳ ŀƴŘ ƛƴǎŜǊǘ ƛǘ ƛƴ ǘƘŜ ȫshow numberΩ ōƭƻŎƪΦ 9Řƛǘ ǘƘŜ ƴǳƳōŜǊ ǘƻ ǘƘŜ ǊƛƎƘǘ ƻŦ ǘƘŜ ȫ÷Ω ǎƛƎƴ ǘƻ ǊŜŀŘ

64. If you use a calculator to do a divide operation you will usually get a decimal point in the answer. Try

dividing 156 by 64 and see what you get. Division on the micro:bit works rather differently. You only get the

ǿƘƻƭŜ ƴǳƳōŜǊ όŀƪŀ ȫƛƴǘŜƎŜǊΩύ ǇŀǊǘ ƻŦ ǘƘŜ ǊŜǎǳƭǘΦ {ƻƳŜǘƛƳŜǎ ǘƘƛǎ ƻǇŜǊŀǘƛƻƴ ƛǎ ŎŀƭƭŜŘ ȫƛƴǘŜƎŜǊ ŘƛǾƛŘŜΩΦ ¢Ŝǎǘ ǘƘŜ

resulting program with the emulator. Now we see that a light level of 156 produces the single digit ̀2Ω on

the display. What are the only possible numbers this program can display?

5ƻƴΩǘ ōƻǘƘŜǊ ǎŀǾƛƴƎΣ ŘƻǿƴƭƻŀŘƛƴƎ ŀƴd transferring

όŀƪŀ ȫŦƭŀǎƘƛƴƎΩύ ǘƘŜ ŎǳǊǊŜƴǘ ǇǊƻƎǊŀƳ ǘƻ ȅƻǳǊ ƳƛŎǊƻΥōƛǘΦ

We can now merge this idea with our 4-state program,

replacing the b̀uttonΩ ǘŜǎǘ ǿƛǘƘ a ̀ light levelΩ ǘŜǎǘΦ We

ǿƛƭƭ ƴƻǿ ƛƴǘǊƻŘǳŎŜ ǘƘŜ ƛŘŜŀ ƻŦ ŀ ȫǾŀǊƛŀōƭŜΩΦ In the

`VariablesΩ ƳŜƴǳ there is a block called M̀ake a

VariableΩ ǿƘƛŎƘ ŀƭƭƻǿǎ ȅƻǳ ǘƻ ŎǊŜŀǘŜ ŀ ƴŜǿ ƻƴŜΦ Click on

`ProjectsΩ ŀƴŘ ǊŜ-open your ȫtǳǎƘ ōǳǘǘƻƴǎΩ ǇǊƻƎǊŀƳ όƻǊ ŎǊŜŀǘŜ

ŀ ƴŜǿ ƻƴŜ ƛŦ ȅƻǳ ŎŀƴΩǘ ŦƛƴŘ ƛǘύΦ LƴǎŜǊǘ ŀ ƴŜǿ ȫsetΩ ōƭƻŎƪ ŦǊƻƳ

the V̀ariablesΩ ƳŜƴǳ, select b̀rightnessΩ ƛƴǎǘŜŀŘ ƻŦ ȫitemΩ ŀǎ

the variable name and insert the l̀ight levelΩ ŀƴŘ ȫdivideΩ

blocks as shown. In each of the `ifΩ ōƭƻŎƪǎ ǊŜǇƭŀŎŜ ǘƘŜ ȫbuttonΩ

block with an èqualsΩ ōƭƻŎƪ ŦǊƻƳ ǘƘŜ ȫLogicΩ ƳŜƴǳΦ LƴǎŜǊǘ ǘƘŜ

variable name b̀rightnessΩ ŀƴŘ ŜŘƛǘ ǘƘŜ ǘŜst value to 1, 2 and 3

in turn.

The completed

program is shown

here. Check it works

using the emulator to

simulate changes in

light intensity.

But the logic is all

wrong!!! We need

more leds when it gets

darker, not lighter!

So can you edit the

program to fix it? Now

you have not only

created a program, but

also detected and

corrected an error.

¢Ƙŀǘ ǇǊƻŎŜǎǎ ƛǎ ŎŀƭƭŜŘ ȫŘŜōǳƎƎƛƴƎΩΦ {ŀǾŜ ȅƻǳǊ ǇǊƻƎǊŀƳ ŀƴŘ ǘǊŀƴǎŦŜǊ ƛǘ ǘƻ ȅƻǳǊ ƳƛŎǊƻΥōƛǘ ǘƻ ŎƘŜŎƪ ƛǘ ƴƻǿ ǿƻǊƪǎ

properly. Move the micro:bit so that the light-levels change and check it works OK.

Congratulations. You have built your first Internet of Things device, using the light sensor to switch on and

ƻŦŦ ǘƘŜ ƭŜŘǎ ƛƴ ǘƘŜ ŘƛǎǇƭŀȅΦ ¢ƘŀǘΩǎ Ƙƻǿ Ƴƻǎǘ ŎǳǊǊŜƴǘ ŎŀǊǎ ƘŀǾe automatic systems to switch their lights on

and off as the light ƭŜǾŜƭ ŎƘŀƴƎŜǎΦ ¸ƻǳ ŎƻǳƭŘ ŀǘǘŀŎƘ ȅƻǳǊ ƳƛŎǊƻΥōƛǘ ǘƻ ǘƘŜ ōŀŎƪ ƻŦ ȅƻǳǊ ōƛƪŜΩǎ ǎŀŘŘƭŜ ǘƻ ŎǊŜŀǘŜ

a smart rear lamp. I have saved my version of the corrected program on Dropbox with this link. Check you

can copy this program to your computer, open it with the PXT editor and transfer it to your micro:bit.

The micro:bit has several sensors other than

temperature or light which can be used to detect

motion. These include accelerometers and

magnetometers which can be used to detect

gestures, collisions and direction. The `rotationΩ

block from the Ìnput MoreΩ menu can measure

the p̀itchΩ (forward and back) and `rollΩ (side to

side) motion of the micro:bit. This program turns

the micro:bit into a spirit-level.

So how does the program work? It continuously

checks the angle being returned by the `pitchΩ

sensor. Dividing this angle by 50 returns a value for the variable `itemΩ ǿƘƛŎƘ ȅƻǳ ŎƻǳƭŘ ǊŜŀŘ ǳǎƛƴƎ ǘƘŜ ȫshow

numberΩ ŎƻƳƳŀƴŘ ŦǊƻƳ ǘƘŜ .ŀǎƛŎ ōƭƻŎƪΦ ¢Ƙƛǎ ƛǎ ŀ ǎƛƴƎƭŜ ŘƛƎƛǘ ǎƛƎƴŜŘ ƴǳƳōŜǊ ōŜǘǿŜŜƴ -4 and +4. We are just

going to test whether this is a ǇƻǎƛǘƛǾŜΣ ƴŜƎŀǘƛǾŜ ƻǊ ȊŜǊƻ ƴǳƳōŜǊΦ LŦ ƛǘΩǎ ȊŜǊƻ ǿŜ ŘƛǎǇƭŀȅ ǘƘŜ ƭŜǘǘŜǊ `LΩ for

[ŜǾŜƭΣ ƛŦ ƛǘΩǎ ƴŜƎŀǘƛǾŜ ǿŜ ŘƛǎǇƭŀȅ `DΩ ŦƻǊ 5ƻǿƴΣ ŀƴŘ ƛŦ ƛǘΩǎ ǇƻǎƛǘƛǾŜ ǿŜ ŘƛǎǇƭŀȅ `UΩ for Up. Then we have a slight

pause before doing the job again. You can test this with on screen emulator by clicking the mouse

somewhere inside the image of the micro:bit at the top left. Check that you can get it to display each one of

the 3 letters. So this is another way to use the micro:bitΩǎ ōǳƛƭǘ-in sensors to control an output. It simulates

the way a smart-phone or tablet senses the orientation of the way in which you are holding the device ς and

https://www.dropbox.com/s/6qldqk5jy54fsyb/microbit-Light-sensed-LEDs.hex?dl=0

so is able always to display text in the right direction for you to read clearly. The last example in this section

turns the micro:bit into another kind of instrument ς a thermometer with a difference. We will use the

variable ̀MinTempΩ to record the lowest temperature reached while the micro:bit is awake and sending.

This starts with a large number stored in it. Every time the temperature sensor records a value lower than

the lowest recorded so far, we replace the value stored in the variable `MinTempΩ with the current one,

saved in ìtemΩ. You can test the program with the emulator by sliding the simulated thermometer. Once

you have transferred the program to the micro:bit, you can detach it, attach batteries and place the

micro:bit in the fridge. When I take mine out after half an hour I find the lowest value was 6°C. So my nice

bottle of white wine is probably just a bit too cold!

Can you edit the program to record the maximum temperature reached? I suspect it Will not do a micro:bit

much good by testing this in a kitchen oven! Can you develop a program which displays the current

temperature while also storing the maximum and minimum temperatures reached? Make it display the

maximum temperature when the A button is pressed and the minimum when the B button is pressed. Place

your micro:bit in a plastic bag and leave it outside for 24 hours to check the max and min temeratures.

2. Connecting external devices

One of the micro:bit menus is called `MusicΩΣ ōǳǘ ǘƘŜǊŜ ƛǎ ƴƻ speaker on the micro:bit itself.

When you try to run the simple program to play a single note, the emulator suggests that you need to

ŎƻƴƴŜŎǘ ȫǇƛƴлΩ ŀƴŘ ȫDb5Ω ǘƻ ŀ ƘŜŀŘǇƘƻƴŜ ƻǊ ǎǇŜŀƪŜǊΦ In the photo below, the bottom left shows a simple

black circular buzzer attached to the micro:bitΩs Pin0 with a green cable and crocodile clips, and to its GND

pin with a black cable. You could use the crocodile clips to attach to the separate sections of the jack plug of

headphones or speakers.

For £2.25 you can buy a ready-made jack plug

adaptor from `Handy Little ModulesΩ or for £5

you can buy the Kitronik M1 power adaptor

(bottom right) which has a built in buzzer

connected to the right pins. So now you can

build a range of alarms to display warning signs

on the led array as well, as making noises.

Could you use the temperature sensor to sound an alarm and flash a light if the temperature in the room

gets too high, or too cold? This is, of course, the principle used by a thermostat to control the central

heating in a home, or the climate control in many modern cars.

As well as external outputs, such as a buzzer, or bright/coloured LEDs, you can also attach external inputs

such as sensors. A very nice project to build an automated plant watering system is described here. This

uses an external moisture sensor to detect the dampness of the soil in a plant pot. It could be used to sound

an alarm so that you are prompted to water the plant. But, better still, the micro:bit could turn on a pump

to water the plant automatically. The water sensor costs £3 and the pump costs £5. More tutorials and

suggestions are on this site.

LetΩs test the water sensor. The red lead is connected to

3V, the black to GND and the blue to pin P0. Here is the

simple code to check it works:

http://microbit-accessories.co.uk/shop/music/headphone-adapter/
http://microbit-accessories.co.uk/shop/music/headphone-adapter/
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html
http://microbit-learning.co.uk/bbc-microbit-plant-watering/
http://microbit-accessories.co.uk/shop/sensor/water-sensor/
http://microbit-accessories.co.uk/shop/output/water-pump/
http://microbit-learning.co.uk/

3. Designing a working system ς smart lighting

In this section, we will simulate working like an electronic systems designer. We will just use the micro:bit as

the smart control device. We will design a system in which a dimmable light emitting diode (LED) responds

to the amount of light falling on another electronic component called a light dependent resistor (LDR). This

simulates the automatic lighting system in a car or house. These components are widely available and quite

cheap. A very convenient resource for this kind of activity is ready made kit, such at the KitronikΩs

`InventorΩs Kit for the BBC micro:bitΩ costing £25. This consists of an `edge connectorΩ into which you plug

your micro:bit. This is connected to two parallel rows of pins which you use to attach wires. This is stuck on

a base board along with an object called a ̀bread-board- with many holes in to allow you to place

components, like an LED, and connecting wires. The photograph below shows page 24 of the tutorial with

ǘƘŜ ŎƛǊŎǳƛǘ ŘƛŀƎǊŀƳ ǿŜ ƴŜŜŘ ǘƻ ōǳƛƭŘΦ hƴ ǘƘŜ ǊƛƎƘǘ ƛǎ ǘƘŜ ŀǎǎŜƳōƭŜŘ LƴǾŜƴǘƻǊΩǎ ƪƛǘ ǿƛǘƘ ǘƘŜ ǇǊƻƎǊŀƳƳŜŘ

micro:bit plugged into the edge connector, with the battery boxed tucked away underneath. The coloured

leads slip over the I/O pins connected to the micro:bit through the edge-connector and plug into holes in the

bread board. We are using three I/O pins, 0, 1 and 2. Also the GND and +3V power pins. The first test

components are a push switch, a potentiometer (variable resistor), a red LED and a 47ʍ ohm resistor.

In this first version we will use the potentiometer as a manual dimmer-switch, like we used the A and B

buttons in earliest example.

Here is the program written in the current Microsoft PXT editor. I

have called it ȫ5ƛƳƳŜǊ ǎǿƛǘŎƘΩΦ ²Ŝ ǳǎŜ ŀ ǾŀǊƛŀōƭŜ ŎŀƭƭŜŘ ȫlight

stateΩ ǘƻ tell whether the LED is switched on (1) or off (0). So the

first bit of code just tells the micro:bit to use the push switch

attached to pin P0 as a `flip-flopΩ to change the state of the LED.

https://www.kitronik.co.uk/5603-inventors-kit-for-the-bbc-microbit.html

